Computer-based Introduction to Data Analysis for Physics, Nano-, and Health TechnologyTechnical University of DenmarkGeneral course objectives: At the end of this course, participants should be able to: identify which elementary kinds of random behavior are likely to be encountered in a given situation and know how to decide if it is the case and to use it in data analysis and modeling of stochastic processes; perform basic estimation and curve-fitting when data is subject to different types of stochastic influences; and validate their results by performing Monte Carlo simulations of elementary stochastic behavior of various kinds. Learning objectives: A student who has met the objectives of the course will be able to:
Contents: This course caters to students in nano-science, physics, biophysics, health tech, chemistry, and well beyond. Its substance is core knowledge on which the understanding of all stochastic phenomena is based, including all experimental data analysis. Examples used for illustrations are important cases chosen from physics, bio-physics, and nano-science, e.g., optical tweezers and diffusion in nanochannels. But even the examples are universal, as far as their math is concerned, and occur with just a change of units in other contexts. It is a hands-on course. Math is introduced when students in computer simulations observe phenomena that can be described mathematically and to develop data-analytic tools. The data-analytical methods will be applied to real and/or synthetic data in mini-projects throughout the course. The programming language used is MatLab but Python may be used by the student with a little extra effort. Assistance with MatLab/Python programming is offered, but some routine with such programming languages and mathematics is required. |
|